UNIVERSIDADE DE SAO PAULO
FACULDADE DE MEDICINA DE RIBEIRAO PRETO

Lucas Guedes de Padua

Analise da composicio da microbiota intestinal associada a um estado de doenc¢a

utilizando aprendizado de maquina

Ribeirao Preto

2022



Lucas Guedes de Padua

Analise da composicao da microbiota intestinal associada a um estado de doenca

utilizando aprendizado de maquina

Trabalho de Conclusio de Curso apresentado ao
Curso de Informatica Biomédica, da Universidade
de Sao Paulo, como parte dos requisitos para
obtengdao do titulo de Bacharel em Informatica
Biomédica.

Orientador: Profa. Dra. Maria Eugenia Guazzaroni

Autorizo a reprodugdo e divulgagdo total ou parcial deste trabalho, por qualquer meio

convencional ou eletronico, para fins de estudo e pesquisa, desde que citada a fonte.

Este trabalho foi apresentado e aprovado pela Comissdo Coordenadora do Curso delnformatica Biomédica em 15/03/2023.

Ribeirao Preto



2022



FICHA CATALOGRAFICA

Padua, Lucas Guedes de

Andlise da composigdo da microbiota intestinal associada a um estado

de doenga utilizando aprendizado de maquina.

Trabalho de Conclusdo de Curso apresentado ao Curso de Informatica
Biomédica, da Universidade de Sdo Paulo, como parte dos requisitos para
obtencdo do titulo de Bacharel em Informatica Biomeédica.

Orientadora: Guazzaroni, Maria Eugenia.

1. Microbiota intestinal; 2. Aprendizado de maquina; 3. Doengas sistémicas.




Dedico esse trabalho aos meus pais, José e
Alessandra, que sempre me apoiaram e acreditaram

em mim.



AGRADECIMENTOS

A Universidade de Sao Paulo e a Faculdade de Medicina de Ribeirdo Preto pelo

ensino e pelas oportunidades.

A todos os professores que tive durante o meu tempo de graduagdo pelos

ensinamentos e experiéncias.

A Profa. Dra. Maria Eugénia Guazzaroni pela oportunidade, atengdo e orientagdo no

desenvolvimento deste trabalho.

Ao Dr. Rafael Silva Rocha, A Dra. Stela Virgilio pela oportunidade que me deram e

pela confianca depositada em mim.

Ao Gustavo Tamasco pela companhia, ajuda e ensinamentos durante o meu estagio.

Aos meus colegas da Turma 17 do Curso de Informatica Biomédica. Vou levar sempre
com muito carinho as memorias de tudo que se passou durante esses quatro anos, foi um

prazer dividir essa experiéncia com voces.

Aos meus amigos Victor Malheiro, Julia Saito, Giullia Inoue, Marina Priolo,
Alexsandra Beatriz, Jodo Pedro, {talo Botura e Felipe Marcelo pela vivéncia e fraternidade.

Vocés fizeram esses quatro anos serem inesqueciveis e muito melhores.

Aos meus pais Jos¢ Domingos e Alessandra Guedes, pelo apoio, ajuda, sacrificios,

amor e carinho por mim. Definitivamente se ndo fosse por vocés eu nao estaria aqui hoje.



RESUMO

A microbiota intestinal € o conjunto de microrganismos que habitam o trato intestinal.
Tais microrganismos exercem fungdes essenciais no metabolismo, no sistema imune € na
nutricdo. A composi¢do da microbiota traz informagdes importantes sobre o estado de satde
de um individuo. A presenca de uma determinada doenga, altera o estado saudéavel do corpo, e
essa alteragdo pode ser vista através da distribui¢do das espécies presentes no intestino. Por
esse motivo, olhar um certo fendtipo através da composi¢do da microbiota pode vir a
desvendar mecanismos e caracteristicas novas da doenca, e auxiliar na prevengao, diagnéstico
e tratamento dessas condigdes. Levando em conta a crescente na geragao de dados de larga
escala e evolucao do processamento computacional, o uso do aprendizado de maquina na
analise da microbiota ¢ uma ferramenta eficaz na hora de associar a composi¢do com a
aparicdo de uma doenga. Neste trabalho foram coletados dados da microbiota intestinal de
pessoas sauddveis e de pessoas com obesidade e Diabetes Tipo 2. Seguidamente, dois
algoritmos de aprendizado de maquina foram utilizados, Regressao Logistica e Random
Forest, para predicdo da doenga e busca de biomarcadores. A Regressdo Logistica obteve
melhores resultados de classificacdo do que o algoritmo de Random Forest, ¢ ambos

encontraram diferentes marcadores para as duas doencas.

Palavras-chave: Microbiota intestinal; Aprendizado de maquina; Random Forest; Regressao

Logistica; Obesidade; Diabetes.



ABSTRACT

The gut microbiota is the collection of all microorganisms that inhabit the
Gastro-Intestinal Tract. These microorganisms play essential roles in our metabolism, immune
system and nutrition. The microbiota composition brings important information about the
health state of an individual. The presence of a disease alters the health state of the body, and
this alteration can be seen through the distribution of the microorganism’s species in our
intestine. For this reason, having a look at a phenotype through the microbiota composition
can unveil new mechanisms and characteristics of the disease. Taking the increase in data
generation and the evolution of computational processing into account, the use of machine
learning on the microbiota analysis is an effective tool when associating the composition with
disease onset. In this work, data of the gut microbiota from healthy people and from people
with obesity and Type 2 Diabetes was collected. Then, two machine learning algorithms were
used, Logistic Regression and Random Forest, for disease prediction and biomarker search.
The Logistic Regression got better classification results than the Random Forest, and both

found different biomarkers for both diseases.

Key words: Gut microbiota; Machine learning; Random Forest; Logistic Regression;

Obesity; Diabetes.
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1. INTRODUCAO

1.1. Problematica abordada

A microbiota intestinal se trata do conjunto de microrganismos que habitam o
trato gastrointestinal. Ela é composta por mais de 1000 espécies e esta envolvida em diversas
fungdes essenciais como no metabolismo e na nutricdo (SEKIROV et al.,, 2010). A
composi¢do da microbiota, ou seja, quais espécies estdo presentes no ambiente do trato, tem
uma relacdo direta com o estado fisiologico do hospedeiro, € mudangas nessa composi¢ao
estdo relacionadas as doengas de obesidade (LEY et al., 2006) e Diabetes Tipo 2 (QIN et al.,
2012). Dada essa associagdo, buscar determinadas espécies que caracterizam essas doencgas e
usar a composi¢cao da microbiota intestinal como preditivo da manifestacao delas ¢ de grande

valor.

1.2. Avanco nas tecnologias de sequenciamento

Com o decorrer dos anos, a partir da descoberta da estrutura do DNA, as
tecnologias de sequenciamento, e de analise computacional avancaram, e tal avango permitiu
a descoberta de todo um novo universo no corpo humano, invisivel ao olho nu, os
microrganismos. Desde o seu inicio as tecnologias de sequenciamento progrediram muito,
comecando com o método de Sanger criado em 1977 (ALVES et al., 2018), que possibilitou
posteriormente o primeiro sequenciamento inteiro do genoma humano. Sequenciar era um
processo que exigia bastante tempo e dinheiro, contudo, com o progresso do sequenciamento,
o custo e tempo demandados diminuiram significativamente (ALVES et al., 2018). O Projeto
Genoma Humano levou 15 anos e aproximadamente 100 milhdes de dolares para ser
concluido usando o sequenciamento Sanger, enquanto o mesmo sequenciamento usando o
454, uma tecnologia de sequenciamento da segunda geracdo, demorou apenas 2 meses €

custou um centésimo do valor (WHEELER et al., 2008).



A possibilidade de sequenciar genomas em menos tempo e gastando menos
dinheiro permitiu o surgimento de novas dareas do conhecimento, que usufruem das
vantagens principalmente de sequenciadores, agora de terceira geragdo, que descartam a
necessidade de amplificagdo das amostras por PCR e conseguem sequenciar leituras mais
longas, mais rapidamente, facilitando posteriormente a montagem do genoma final, e tudo
isso com um custo ainda mais baixo que os sequenciadores da geracdo anterior

(KCHOUK et al., 2017).

Os sequenciadores de nova geracdao possibilitaram a criagdo e crescimento da
Metagendmica, que visa estudar os genomas de todos os microrganismos presentes em
uma comunidade. Enquanto uma comunidade de microrganismos ¢ chamada de
microbiota, o conjunto de genomas desses microrganismos ¢ denominado de microbioma.
A vantagem que os sequenciadores de nova geracdo oferecem permite que todas as
espécies presentes em uma microbiota tenham seu genoma representado de forma
significativa, mesmo quando em abundancias diferentes (ROUMPEKA et al., 2017). A
Metagenomica ¢ de extrema importancia, pois através dela ¢ possivel estudar
microrganismos dificilmente cultivaveis, analisando seus genomas em uma determinada

comunidade (ALVES et al., 2018).

Um exemplo de sequenciador de terceira geragdao ¢ o MinlON da Oxford
Nanopore. O MinlON ¢ um dispositivo portatil que mede aproximadamente 10
centimetros, € se comunica com o computador por meio de uma entrada USB 3.0. O
sequenciamento acontece através de nanoporos, que sdao orificios na nanoescala
construidos com proteinas ou material sintético. As duas fitas do DNA passam pelo
nanoporo em sequéncia, ¢ a mudanca dos nucleotideos enquanto as fitas passam pelo
nanoporo causam uma mudanca na corrente iOnica, que ¢ captada e colocada em um
grafico, onde cada corrente ira representar uma base (KCHOUK et al., 2017). A Figura 1

mostra um exemplo do minlON conectado a um computador.
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Figura 1. Sequenciador minlON conectado em um notebook.
Retirado de:
https://www.genengnews.com/insights/first-nanopore-sequencing-of-human-genome/

1.3. Funcio e importiancia da microbiota intestinal

Através do sequenciamento de nova geragdo e das ferramentas mais avangadas
de bioinformatica, ¢ possivel explorar a diversidade genética de uma comunidade
nao-cultivavel (SHARPTON., 2014). Usando esse método foi realizada a caracterizacao

da microbiota humana, o conjunto de microrganismos presentes no corpo humano.

A microbiota humana ¢ o conjunto de microrganismos que habita diferentes partes
do corpo. Nele se encontram 10 vezes mais microrganismos do que células humanas, e
100 vezes mais quando comparado o numero de genes humanos codificados com o
nimero de genes microbianos codificados. A microbiota intestinal ¢ composta por mais de
1000 espécies a nivel de filotipo (LOZUPONE et al., 2012; CLAESSON et al., 2009), e

esta envolvida no metabolismo, na funcao imunoldgica, fisiologia e nutrigao.

Estando presente em todas as partes do corpo, no trato intestinal ¢ onde ¢
encontrada a maior diversidade microbiana no ser humano, mesmo sendo composta por
mais de 1000 espécies, a microbiota intestinal se resume majoritariamente em apenas 2
filos: os Firmicutes e os Bacteroidetes (SEKIROV et al., 2010). Essa diversidade de
espécies se dd por conta da redundancia funcional na microbiota. Pessoas diferentes

divergem muito na composi¢do dos microrganismos que habitam o seu trato



gastrointestinal, contudo, os perfis de genes funcionais sdo bem mais similares
(LOZUPONE et al., 2012), isso porque diversas fungdes foram transferidas entre espécies,
ndo necessariamente relacionadas filogeneticamente, no decorrer do tempo. O anterior
garante que caso haja uma diminui¢do da presenca de uma certa espécie, possivelmente
uma outra espécie possa assumir as tarefas que a anterior exercia, garantindo assim a

manuten¢do de um estado saudavel (LOZUPONE et al., 2012).

A composi¢cdo da microbiota tem uma relagdo direta com o estado fisioldgico do
hospedeiro, e algumas mudancas nessa composi¢cdo contribuem diretamente para um
estado de doencga. Diversos fatores podem influenciar na alteracdo e possivel disrup¢ao da
microbiota intestinal, como mudancas na dieta, estresse, idade, ambiente, assim como
fatores genéticos. A alteragao da composi¢cdo da microbiota pode ser associada a doengas
como obesidade (LEY et al., 2006), COVID-19 (ZUO et al., 2020), cancer de pancreas
(Kartal et al.,, 2022) e Diabetes Tipo 2 (QIN et al.,, 2012). Em certas doengas, as
divergéncias sdo consistentes entre diferentes individuos, quando comparados a individuos
saudaveis, como na doenca de Chron (WILING et al., 2010), porém em outros casos
existe divergéncia dos grupos controle, mas ndo ha consisténcia entre os grupos estudados

(CHANG et al., 2008).

1.3.1. A microbiota intestinal da obesidade

A obesidade, descrita como a epidemia do século 21 segundo a Organiza¢cdo Mundial
da Satde (OMS), ¢ uma doenga multifatorial, o que significa que existem varias causas
que produzem sobrepeso e obesidade, € ndo apenas uma. Dentre elas podemos destacar as
causas genéticas, metabolicas, psicologicas, socioculturais, neuroendocrinas,
sedentarismo, microbiota intestinal e alimentagdo hipercaldrica. A prevaléncia da
obesidade no mundo quase triplicou desde 1975, sendo que no inicio se tratava apenas de
um problema em paises desenvolvidos. Com o decorrer dos anos essa condi¢ao comegou a
se espalhar por paises em desenvolvimento, e em 2016, 13% da populacdo mundial adulta
era obesa (OMS, 2021). As principais causas para esse aumento alarmante do nivel de
obesidade, podem ser associadas a crescente urbaniza¢do no ultimo século, e maior
consumo de alimentos gordurosos. A obesidade ¢ a causa de diversas mortes ao redor do
mundo, além de aumentar o risco de doencas como diabetes, doengas cardiovasculares,

condi¢des musculo-esqueletais e cancer (OMS, 2021). Sendo uma das consequéncias da



ma nutri¢do, a obesidade ¢ uma doenga que pode ser prevenida com reeducacao de habitos

alimentares e pratica de exercicios fisicos (OMS, 2021).

Mesmo que a obesidade sendo considerada uma doenca multifatorial, diversos
estudos buscaram entender a fundo o envolvimento da microbiota intestinal e sua
composi¢ao na obesidade. Fatores como a diminui¢do da diversidade da microbiota, razao
entre a abundancia de Firmicutes e Bacteroidetes, além da diferenga em abundancia de
géneros de bactérias responsaveis por fungdes metabolicas foram apontados como
possiveis alteragdes decorrentes da obesidade. Porém a inconsisténcia desses achados em
diferentes estudos e dificuldade de entender a relagdo de causalidade entre essas
caracteristicas e¢ a obesidade, impdem um desafio no entendimento da relagdo entre a

microbiota e a obesidade (Tagliabue, 2013).

1.3.2. A microbiota intestinal da diabetes

A diabetes ¢ uma doenca sistémica, causada pela inabilidade do corpo humano de
produzir insulina suficiente, ou de conseguir utilizd-la de forma eficaz. O numero de
pessoas diabéticas no mundo saltou de 108 milhdes em 1980 para 480 milhdes em 2014.
A diabetes tipo 2, tipo mais comum, compondo 95% de todos os casos de diabetes, ¢
consequéncia direta do sobrepeso e da inatividade fisica. A diabetes aumenta o risco de
condi¢des no rim, de doencas cardiovasculares, de amputacao de membros e cegueira, €
foi causa de 2 milhdes de mortes apenas em 2019. A diabetes também ¢ uma doencga que
pode ser evitada com bons habitos alimentares e pratica de exercicios fisicos (OMS,

2022).

Em estudos sobre a microbiota intestinal de pessoas diabéticas, uma disbiose pode
ser observada, com diminui¢do da abundancia de bactérias benéficas, principalmente
aquelas envolvidas em produzir acido butirico e aumento em bactérias conhecidas por
serem oportunistas. No entanto, assim como nos estudos sobre obesidade, a diversidade da
abundancia dessas bactérias oportunistas foi alta, e dificulta o entendimento da

participacdo delas no quadro de Diabetes (QIN et al., 2012).

Como demonstrado anteriormente, obesidade e diabetes tipo 2 sdo doencgas

altamente relacionadas, com causas, riscos e¢ formas de prevencao semelhantes, causando



milhares de mortes anualmente, e a sua presenca s6 aumenta cada vez mais, consequéncia
de um mundo cada vez mais urbanizado, com comidas cada vez mais industrializadas e
aumento de habitos nao saudaveis como pouca atividade fisica (OMS, 2022). A obesidade
pode ainda ser uma das causas de desenvolvimento da diabetes (CHATTERJEE;
GERDES; MARTINEZ, 2020). Desvendar, por meio da microbiota intestinal, as
caracteristicas que podem levar a prevencdo, diagnodstico ou terapia dessas doengas ¢
essencial para entender o funcionamento complexo dessas condigdes, € impedir que ainda
mais pessoas sejam acometidas por elas, num futuro onde caminhamos para ainda mais

sedentarismo e uma alimentacdo cada vez menos balanceada.

1.4. Uso do aprendizado de maquina no reconhecimento de padroes

O aprendizado de maquina ¢ a capacidade de um computador aprender sem
ser explicitamente programado (SAMUEL., 2000). Usando desse aprendizado, o
computador € capaz de gerar uma saida, ou uma previsdo, baseado em dados de entrada
inéditos. O aprendizado de maquina pode ser separado em diversas areas, destacando duas

delas, o aprendizado ndo supervisionado e o aprendizado supervisionado (Figura 2).

O aprendizado ndo supervisionado permite analisar e categorizar conjuntos de
dados ndo classificados, onde nao ha uma saida previamente conhecida. Tal técnica
viabiliza a exploracdo e extracdo de informacdes quando pouco se sabe sobre como os
dados interagem entre si. Esse tipo de aprendizado ¢ mais comumente usado quando o
objetivo ¢ de agrupar entradas semelhantes ou reduzir a dimensionalidade dos dados. O
aprendizado supervisionado usa de conjuntos de dados que possuem tanto as entradas,
como as saidas, e usando dessas informagdes aproxima uma fungao que melhor descreve
esses dados, a usando posteriormente para fazer predicdo em entradas inéditas, que ndo se
conhece a saida, ou a resposta. Um dos exemplos de tarefas do aprendizado

supervisionado ¢ a classificacdo. (MAHESH, 2018).
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Figura 2: Na esquerda, uma tarefa tipica do aprendizado supervisionado, a classificagdo,
e na direita uma tipica do aprendizado ndo supervisionado, o agrupamento, ou
clusterizagao. Retirado de:

https://www.linkedin.com/pulse/supervised-vs-unsupervised-learning-whats-difference-smr

iti-sai ni/

A grande vantagem do uso de algoritmos de aprendizado de méquina se demonstra
quando estamos trabalhando com dados de alta dimensionalidade e complexidade. Quando
nods temos dados com essas caracteristicas, se torna praticamente impossivel encontrar e
extrair informagdes deles usando métodos convencionais (MAHESH, 2018). Isso ocorre
quando existem muitas variaveis, na sua maioria na casa das centenas, e todas elas
contribuem para a resposta final, dificultando em muito a interpretabilidade dos dados.
Com o aumento significativo da coleta e disponibilizagao de dados, o uso de técnicas de
aprendizado de maquina se torna cada vez mais presente e fundamental na extragdo de

informacdes de dados complexos, sendo essencial para o progresso tecnologico

(AKINSOLA, 2017).

1.4.1. O funcionamento do aprendizado de maquina supervisionado

O aprendizado de maquina supervisionado ¢ um método que faz o caminho inverso.
De fato, nunca sera possivel saber qual a fungdo que perfeitamente descreve os nossos
dados. Por meio de um método iterativo, ou seja, uma operacao repetida diversas vezes, €
utilizando um conjunto de dados onde se tém os valores de entrada e saida, ¢ possivel
aproximar os parametros de uma funcdo hipotética que melhor descreve aqueles dados,

parafraseando. Ou seja, o algoritmo permite que se aprenda dos dados, para que em uma



entrada de dados inédita, onde ndo se sabe a saida, utilizando da fun¢do aproximada e dos
parametros aprendidos, seja possivel fazer uma predicao do resultado final (DHAR et al.,

2020).

Existem diversos algoritmos de aprendizado de maquina supervisionado, e cada
um deles possui caracteristicas proprias, como fun¢des de minimizagdo de erro, tipo de
predi¢do, estrutura, complexidade, interpretabilidade, entre outras. Cada algoritmo tem
sua peculiaridade, e sua aplicagdo tera um desempenho diferente, dependendo das
caracteristicas do conjunto de dados de interesse (SINGH; THAKUR; SHARMA, 2016).
Em suma, o que ¢ oferecido por cada algoritmo diferente, ¢ um conjunto de hipoteses, e
quando o modelo aprende dos dados, ele encontra nesse conjunto de hipdteses, uma que
melhor os descreve. Quando falamos em uma hipotese que melhor descreve os dados,
queremos dizer que quando essa hipotese foi usada pelo modelo para predizer as saidas,

ela gerou o menor erro possivel (ABU-MOSTAFA, 2012).

Assim, o aprendizado supervisionado ¢ o método de preferéncia quando se tem
conhecimento sobre a estrutura dos dados, e se busca encontrar padroes que possam
explicar a distribuicao deles, permitindo que o algoritmo infira uma saida utilizando das
informagdes descobertas, quando frente a uma entrada desconhecida pela maquina

(MAHESH, 2018).

1.4.1.1. Regressdo Logistica

A regressao logistica ¢ um método de modelagem matematica, que permite associar
diversas varidveis a uma saida dicotdmica, ou seja, uma saida que pode apenas assumir
dois valores. A regressao logistica ¢ um modelo muito utilizado pela sua robustez,
simplicidade e também pela caracteristica da saida que ele retorna. O modelo logistico
usa de uma fung¢do que sempre retorna um valor entre 0 e 1, fazendo com que fique facil a
interpretabilidade do resultado. Esse tipo de saida também permite que sejam ajustados os
limites para quando assumir se uma saida vai ser 0 ou 1, alterando o valor minimo
necessario da probabilidade para que as classes sejam escolhidas (KLEINBAUM;
KLEIN, 2010).

1.4.1.1.1. Regulariza¢do LASSO



Uma das limitagdes da regressdo logistica € o risco de um modelo enviesado,
principalmente quando o niimero de varidveis € superior ou muito préximo ao niimero de
observagoes, fazendo com que o modelo nao tenha muitos exemplos para aprender. A
regularizacdo LASSO (Least Absolute Shrinkage and Selection Operator) ¢ uma das
abordagens para esse problema. Essa regularizagdo impde um limite, um valor maximo,
que a soma de todos os valores absolutos dos coeficientes aproximados pode assumir. Isso
permite que o algoritmo diminua, e at¢ mesmo zere, o valor de alguns coeficientes que

ndo contribuem para a minimizag¢ao do erro (RANSTAM; COOK, 2018).

Essa limitagdo diminui a complexidade do modelo e melhora a sua performance,
visto que o modelo construido fica mais generalizado. Isso ocorre, pois as chances de o
modelo estar enviesado diminuem consideravelmente por causa do menor nimero de
variaveis, resultando em um modelo cuja distribui¢do ndo se ajustou ao ruido presente nos
dados. A regularizagdo também permite a visualizagdo das varidveis mais importantes,

que mais contribuiram para o modelo final (RANSTAM; COOK, 2018).

1.4.2. Random Forest

Random Forest, ou floresta aleatoria, ¢ um método de ensemble, que usa arvores de
decisio como o modelo base. Métodos de ensemble usam varios modelos
simultancamente para construir um modelo final e fazer a predicdo (HASTIE;
TIBSHIRANI; FRIEDMAN, 2009). No caso da Random Forest, varias arvores de decisao
sao treinadas, usando diferentes fracdoes dos dados ¢ das varidveis. Para fazer uma nova
predicao, um dado inédito vai ser analisado por todas as arvores geradas, € no caso da
classificagdo, a categoria que mais apareceu entre as arvores vai ser escolhida. O método
de Random Forest impede que os resultados sejam enviesados, uma caracteristica
conhecida das classificacdes usando arvores de decisdo, devido ao uso de apenas uma
fracdo dos dados conhecidos, e selecdo apenas das arvores que deram os melhores

resultados (HASTIE; TIBSHIRANI; FRIEDMAN, 2009).

Por causa dessa sele¢do de arvores, as Random Forest conseguem calcular quais
varidveis geraram os melhores resultados, e ¢ possivel visualizar essas varidveis
posteriormente, extraindo mais informacdes ainda do conjunto de dados (HASTIE;

TIBSHIRANI; FRIEDMAN, 2009).



1.4.3. O uso de métodos de aprendizado de maquina em estudos de microbiota

intestinal

Na dultima década, houve um aumento significativo no nimero de estudos
relacionados ao estado da microbiota intestinal associado com diversas doencas, € também
de catalogagdes massivas da microbiota saudavel, como o Human Microbiome Project
(HUTTENHOWER et al., 2012), que por sua vez aumentou a quantidade de dados
gerados, e disponiveis sobre a microbiota intestinal humana (MARCOS-ZAMBRANO et
al., 2021).

O aprendizado de maquina foi e € usado extensivamente na bioinformatica, ¢ para
varios fins, como na avaliacao de diferentes métodos de classificagdo (STATNIKOV et al.,
2005), ou generalizacdo de modelos em diferentes estudos (PASOLLI et al., 2016).
Também, o uso de algoritmos de aprendizado de maquina pode trazer novas descobertas
em relacdo a composicdo e estrutura da microbiota e caracteristicas de determinados
fenotipos, além da descoberta de biomarcadores dessas doencas. Tais algoritmos podem
ainda ser usados na medicina personalizada, para tratamentos mais eficazes e ainda na
predicdo da aparicdo de uma condicdo, usando os dados da microbiota intestinal de um

individuo como parte do diagndstico (MARCOS-ZAMBRANO et al., 2021).

1.5. A linguagem de programacao Julia

Julia é uma linguagem de programacdo compilada, e de tipagem dindmica,
desenvolvida desde o inicio com enfoque na performance, porém com a facilidade de uma
sintaxe simples e compreensivel. A linguagem de programacao Julia visa resolver o
problema da necessidade de usar duas linguagens quando a performance e eficiéncia de
um algoritmo ¢ necessdria, porém o algoritmo foi escrito primariamente em uma

linguagem dinamica de alto nivel (BEZANSON et al., 2012).

Isso ocorre porque ¢ muito mais facil escrever algoritmos em linguagens
dindmicas de alto nivel, pela simplicidade da sintaxe e proximidade com a linguagem
humana. Porém essas linguagens de programacdo deixam a desejar na performance,
acarretando na reescrita do algoritmo em uma linguagem de baixo nivel quando ¢
necessario otimizar o desempenho do programa (BEZANSON et al., 2012). Julia entdo

consegue resolver esse problema, tendo a performance de uma linguagem compilada



estaticamente, porém com a flexibilidade e produtividade de linguagem interpretada de
alto nivel. A linguagem consegue esse feito devido a tecnologias unicas como despacho
multiplo, e compilagdo Just In Time, que agilizam a execucao do programa (BEZANSON,

etal., 2012).



2. OBJETIVOS

O presente trabalho tem como objetivo analisar dados de abundancia relativa de
microrganismos da microbiota intestinal, de pessoas saudaveis e pessoas que possuem
obesidade ou diabetes tipo 2, utilizando aprendizado de maquina, a fim de construir um
modelo preditivo desses fendtipos e buscar biomarcadores que caracterizem a microbiota

intestinal associada a essas doengas.

2.1. Objetivos especificos

1) Obtencdo dos dados de abundéncia relativa dos microrganismos da microbiota
intestinal de pessoas que possuem obesidade ou diabetes tipo 2, e de pessoas saudaveis;
2) Pré-processamento, transformacao e normalizacdo dos dados obtidos;

3) Construcao de modelos de Regressao Logistica € Random Forest para predigao do
fenotipo e descoberta de biomarcadores;

4) Avaliagdo da performance preditiva e relevancia dos biomarcadores encontrados.



3. METODOLOGIA

3.1. Obtencao dos dados

Os dados foram obtidos do website Kaggle, sendo que o conjunto utilizado foi o
Metagenomics, oriundo do estudo de Pasolli et al. (2016). Esses dados sdo de livre acesso,
e podem ser encontrados em: Attps:/www.kaggle.com/datasets/antaresnyc/metagenomics.
Os dados utilizados sdo da abundancia relativa de microrganismos da microbiota
intestinal de pessoas acometidas com determinadas doencgas, contendo a abundancia dos
microrganismos em varios niveis da classifica¢do taxonomica. Este conjunto de dados foi
formado pela combinacdo de oito conjuntos distintos, onde seis vieram de estudos
caso-controle que abordavam diferentes doengas, no caso, Cirrose, Doenca Inflamatéria
Intestinal, Cancer do Colo Retal, Obesidade e Diabetes Tipo 2, sendo que dois estudos
diferentes estudaram Diabetes. Os dados dos dois estudos restantes sao apenas de pessoas

saudaveis, e ndo sdo exclusivos da microbiota intestinal.

3.2. Separacio dos dados de interesse

Neste trabalho, os dados de interesse eram dos estudos que abordaram a obesidade e
diabetes tipo 2. Sendo assim, apenas os dados que eram sobre essas enfermidades foram
separados dos demais. Os dados sobre obesidade sao do estudo de LE CHATELIER et al.
(2013), e os dados sobre diabetes tipo 2 sao do estudo de QIN et al. (2012). Os dados
foram separados utilizando a biblioteca DataFrames (v 1.3.4) da linguagem de

programacao Julia (v 1.7.3, Bezanson et al., 2012).

3.3. Pré-processamento dos dados

Aplicando a biblioteca DataFrames (v 1.3.4), foram renomeados os dados da
coluna “disease” do conjunto de diabetes, para “n” nas amostras controle e para “disease”
nas amostras dos casos. Como esses dados vieram de estudos diferentes, ambos usavam
nomes distintos para classificar as amostras de diabéticas. Essa renomeagao foi feita para
padronizar os nomes nas colunas, garantindo que o algoritmo possa interpretar essas

informacgdes de maneira correta.



Ainda usando a mesma biblioteca, foi feito o mesmo processo de renomeacao da
coluna “disease” dos dados de obesidade para “n” nos controles e “disease” para os casos.
As amostras que estavam marcadas como "leaness" também foram classificadas para “n”,
a fim de diminuir a discrepancia entre o nimero de amostras de cada classe. Foram
separados os dados da abundancia relativa dos metadados de ambos os conjuntos, e
filtradas as colunas de metadados que nao tinha informagao nenhuma, retirando as colunas

9

que possuiam linhas contendo ou “nd”. Nos dados da abundancia relativa, foram
retiradas as colunas cuja abundancia méxima era igual a zero, ja que elas ndo seriam
informativas, e também foram deixadas apenas as colunas que representavam a
abundancia no nivel de género. Nesses dados, as abundancias sdo cumulativas, ou seja, a
abundancia de uma classe taxondmica mais abrangente, como familia, vai se diluindo

entre as classes mais especificas, como género.

Os nomes das colunas seguem o padrdo de possuir a primeira letra representando a
classe, seguido do nome da classe a qual aquele organismo pertence. Como por exemplo,
a coluna de nome: k___Bacteria|p___Bacteroidetes|c____Bacteroidiajo____Bacteroidales|f
Bacteroidaceae|g__ Bacteroid es, representa a abundancia relativa do género Bacteroides.
Aplicando fungdes de processamento de texto da linguagem Julia (v 1.7.3, Bezanson et
al., 2012), é possivel remover separar o texto no caractere “|” e remover todos os textos
que ndo comecam com “g_", deixando assim o nome da coluna apenas com o nome do
género. Isso foi feito para melhorar a interpretabilidade dos dados, e diminuir a

dimensionalidade. Esse procedimento foi realizado para ambos os conjuntos de dados.

Posteriormente, foi feita a separacdo dos dados de entrada, que sdo as abundancias
relativas de cada género, dos dados de saida, que ¢ a classificacdo de cada amostra. Para
isso, foi usada uma fun¢ao da biblioteca MLJ (v 0.18.5, Blaom et al., 2020) que separou a
coluna que continha os dados de saida “disease” das demais colunas. Ademais também foi
feita a transformagdo da coluna saida, de texto para OrderedFactor. Essa transformagao ¢
necessaria para que os modelos utilizados interpretem as saidas como categorias, € nao
apenas texto, e funcionem da maneira correta. Esse procedimento foi realizado para

ambos os conjuntos de dados.

3.4. Normalizacao dos dados



Para que as técnicas utilizadas funcionem da maneira correta, é esperado que os
dados de entrada sigam uma distribuicdo mais proxima da normal possivel. Os dados
originais nao estavam normalizados, e isso poderia acarretar em um resultado enviesado e
uma analise incorreta. Sendo assim, utilizando da biblioteca MLJ (v 0.18.5, Blaom et al.,
2020), foi feita uma normalizacdo por Z-Score, deixando os dados com média igual a zero

e variancia igual a um. Esse procedimento foi realizado em ambos os conjuntos de dados.

3.5. Separacio dos conjuntos de treino e teste

Em um algoritmo de aprendizado de maquina, ¢ necessario separar o conjunto de
dados de interesse em conjuntos de treino e de teste, para que seja feita a validacdo correta
do modelo construido, utilizando dados inéditos, que nao fizeram parte do treinamento do
modelo. Para isso, foi utilizada a biblioteca MLJ (v 0.18.5, Blaom et al., 2020), para
separar ambos os conjuntos de dados, usando 70% dos conjuntos para treino e 30% para
teste. A ordem das amostras também foi embaralhada aleatoriamente, garantindo que uma
presenca equivalente de ambas as classes no treino e no teste. Isso impede que o modelo
acabe sendo treinado apenas nos dados de controle ou de caso, e ndo consiga generalizar

para o problema inteiro.

3.6. Filtragem por correlagio linear

A fim de melhorar a performance do modelo, foi feita filtragem de colunas que
eram colineares com outras. Foi calculada a correla¢do linear de Pearson entre todas as
colunas, usando a fung¢do cor(). Todas as colunas que possuiam correlacdo maior que 0.9
com outras foram separadas. Aquelas colunas que tinham essa correlagdo maior que 0.9

com uma ou mais colunas foram retiradas.

3.7. Construcio do modelo de Regressao Logistica e Random Forest

Usando da biblioteca MLJ (v 0.18.5, Blaom et al., 2020), foi construido o modelo
utilizado de Regressdao Logistica. O modelo foi carregado usando os seguintes
hiperparametros: max _iter = 3000, penalty = "11", solver = "liblinear". Esses parametros
foram escolhidos pois geraram os melhores resultados. A escolha do parametro penalty

“I1” permite que seja feita uma selecdo de atributos dentro do proprio modelo, ja que com



essa penalidade ¢ possivel identificar quais foram os atributos mais relevantes para a
predi¢do. Essa funcionalidade foi usada para a descoberta de biomarcadores em ambos os

conjuntos de dados.

Também foi construido o modelo de Random Forest usando a biblioteca MLJ (v

0.18.5, Blaom et al., 2020). Ele foi carregado com os pardmetros padroes.

Na Regressao Logistica, o hiperpardmetro C do modelo foi o escolhido para ser
ajustado usando o método de GridSearch. Esse hiperparametro € o limite de regularizagao
que a penalidade “I1” usa, ele impde um limite que a soma dos valores absolutos dos
pesos ajustados ndo pode ser maior que o determinado valor. Isso garante que o modelo
zere aquelas variaveis irrelevantes, na tentativa de deixar a soma menor que o limite, e
previne o modelo de se ajustar muito ao ruido, e tenha um ajuste mais generalizado dos
dados. O ajuste do hiperparametro possibilita que o modelo seja treinado e testado usando
valores alterando entre 0.1 e 1.0, na escala logaritmica, organizados em um Grid de
dimensdo dez. Ou seja, cem valores para o hiperparametro C foram testados, por meio de
Stratified K-Fold Cross-Validation no conjunto de treino, € o valor que gerou o menor
numero de classificagcdes incorretas foi escolhido para ser usado no modelo final. A
testagem por Stratified K-Fold Cross-Validation, separa o conjunto de treino em K partes,
mantendo a porcentagem de cada classe em todas as partes, treina o modelo com o valor
da vez em todas as K-1 partes, e testa na parte restante. Isso garante que o hiperparametro
encontrado foi testado em todo o dado, e ndo apenas em uma parcela. Foram usadas cinco

dobras nessa etapa. Esse ajuste foi feito para ambos os conjuntos de dados.

No modelo de Random Forest, o hiperparametro escolhido a ser ajustado foi o
n_estimators, que representa o numero de arvores que tera na floresta. Esse
hiperparametro também foi ajustado por GridSearch, com um Grid de tamanho dez,
usando Stratified Cross-Validation de cinco dobras. O nimero de arvores que gerou o

maior valor de auc, ou seja, area sob a curva ROC, foi escolhido pelo algoritmo.

ApoOs o ajuste dos hiperparametros de ambos os modelos, eles foram treinados nos
dados de treino, por meio da biblioteca MLJ (v0.18.5, Blaom et al., 2020), usando
Cross-Validation de cinco dobras, e o treino foi repetido 5 vezes. O mesmo procedimento

foi realizado para ambos os conjuntos de dados.



3.8. Selecao de atributos e re-treinamento

Apds o primeiro treino, aplicando a biblioteca DataFrames (v1.3.4), foi resgatado
os coeficientes de cada variavel, no caso da Regressdo Logistica, que representam a
importancia de cada uma delas para o ajuste do modelo, e os valores de importancia de
cada variavel, no caso da Random Forest,. Foram identificadas aquelas varidveis cuja
importancia era igual a zero, ou seja, que foram irrelevantes para o ajuste do modelo final.
Essas variaveis foram retiradas do conjunto de dados, deixando apenas aquelas varidveis

que contribuiram para o ajuste do modelo.

Usando a biblioteca MLJ (v0.18.5, Blaom et al., 2020), foi refeito o treinamento
de ambos os modelos com os dados contendo apenas as respectivas varidveis
selecionadas, usando os mesmos parametros do primeiro treino. Esse procedimento foi

realizado para ambos os conjuntos de dados.

3.9. Identificacdo de biomarcadores

Com o segundo treinamento realizado, na Regressao Logistica, foram resgatados
novamente os coeficientes das variaveis usadas. Aquelas variaveis que mais influenciaram

positivamente ou negativamente no ajuste do modelo, foram investigadas.

No modelo de Random Forest, a identificagao de biomarcadores foi feita por um
método iterativo, onde 50% por cento das varidveis mais importantes eram usadas para
treino, usando Cross-Validation. Esse procedimento foi realizado 5 vezes, cada vez usando
apenas 50% das varidveis mais importantes, restando apenas 5 variaveis no final do

processo. Essas 5 variaveis foram investigadas.

3.10. Validacio e avaliacio de performance

O modelo final construido foi validado usando o conjunto de testes que foi
reservado, cujo os dados ndo fizeram parte da etapa do treinamento, ou seja, sdo dados
inéditos para o modelo. Usando a biblioteca MLJ (v0.18.5, Blaom et al., 2020), foi feita a

predicao do fenotipo nesses dados inéditos.

O desempenho do modelo foi avaliado usando quatro métricas, f/score, acuracia,



precisdo e sensitividade. A métrica fIscore ¢ a média harmonica entre precisdo e
sensitividade, a acuracia ¢ a propor¢do de predi¢des corretas do modelo, sensitividade
mede dentre todos os casos positivos, o quanto o modelo acertou, e a precisdo mede dentre
todas as previsdes positivas, quantas realmente eram positivas. Também foram geradas as
matrizes de confusdo, que mostram os valores de falso e verdadeiro, positivo e negativo,
para ambos, ¢ os graficos de curva ROC com o valor da auc, que mede o qudo bem o

modelo consegue distinguir entre as classes.

3.11. Investigacao de biomarcadores

Para todos os biomarcadores encontrados, foram gerados graficos do tipo boxplot,
usando a biblioteca StatsPlots (v.0.15.4), comparando a distribui¢cdo das abundancias,
entre casos e controles. Também foi realizado o teste estatistico de Mann-Whitney para
averiguar se havia diferenga significativa entre a abundancia dos biomarcadores nos casos

€ nos controles.



4. RESULTADOS

4.1. Resultados de predicao da Regressao Logistica nos dados de obesidade

O modelo final foi treinado nos dados de treino de obesidade com as melhores

variaveis selecionadas, e foi avaliado usando quatro diferentes métricas (Tabela 1). O

modelo também teve o valor de auc e curva ROC (Figura 2), além da matriz de

confusdo gerada (Tabela 2).

Tabela 1: Resultados da validagdo do modelo no conjunto de testes nos dados de

obesidade.

Flscore 0.69

Acuracia 0.60

Sensitividade 0.88

Precisao 0.56

Area sob a curva ROC 0.59
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Figura 3: Curva ROC do modelo de Regressio Logistica treinado nos dados de

obesidade.




Tabela 2: Matriz de confusdo do modelo de Regressao Logistica treinado nos
dados de obesidade.

True label

obesity

n obesity
Predicted label

4.2. Resultados de predicao da Regressiao Logistica nos dados de diabetes

O modelo final foi treinado nos dados de treino de diabetes com as melhores
variaveis selecionadas, e foi avaliado usando quatro diferentes métricas (Tabela 3). O

modelo também teve o valor de auc e curva ROC (Figura 3), além da matriz de

confusdo gerada (Tabela 4).

Tabela 3: Resultados da validagdo do modelo no conjunto de testes nos dados de
diabetes.

Flscore 0.66
Acuricia 0.61
Sensitividade 0.75
Precisao 0.59
Area sob a curva ROC 0.70
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Figura 4: Curva ROC do modelo de Regressao Logistica treinado nos dados de diabetes.

Tabela 4: Matriz de confusdao do modelo de Regressao Logistica treinado nos

dados de diabetes.

True label

diabetes

n diabetes
Predicted label



True Positive Rate

4.3. Resultados de predicao da Random Forest nos dados de obesidade

O modelo final foi treinado nos dados de treino de obesidade com as melhores
variaveis selecionadas, e foi avaliado usando quatro diferentes métricas (Tabela 5). O modelo

também teve o valor de auc e curva ROC (Figura 4), além da matriz de confusdo gerada

(Tabela 6).

Tabela 5: Resultados da validagdo do modelo no conjunto de testes nos dados de obesidade.

Flscore 0.59
Acuricia 0.53
Sensitividade 0.65
Precisdo 0.54
Area sob a curva ROC 0.56
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Figura 5: Curva ROC do modelo de Random Forest treinado nos dados de obesidade



Tabela 6: Matriz de confusdo do modelo de Random Forest treinado nos dados de obesidade

19

True label

obesity

11

T 10
n obesity
Predicted label

-4.4. Resultados de predicio da Random Forest nos dados de diabetes

O modelo final foi treinado nos dados de diabetes com as melhores variaveis
selecionadas, e foi avaliado usando quatro diferentes métricas (Tabela 7). O modelo também

teve o valor de auc e curva ROC (Figura 5), além da matriz de confusdo gerada (Tabela 8).

Tabela 7: Resultados da validagdo do modelo no conjunto de testes nos dados de diabetes.

Flscore 0.64
Acuricia 0.60
Sensitividade 0.58
Precisao 0.70
Area sob a curva ROC 0.73
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Figura 6: Curva ROC do modelo de Random Forest treinado nos dados de diabetes

Tabela 8: Matriz de confusdo do modelo de Random Forest treinado nos dados de diabetes

24

True label

diabetes

n diabetes
Predicted label



4.5. Descoberta e investigacio de biomarcadores utilizando Regressao Logistica nos dados
de obesidade

Por meio dos coeficientes das varidveis que o modelo de Regressdo Logistica retorna,
podemos descobrir quais foram os géneros que tiveram mais influéncia no ajuste do modelo
final. Os géneros Deinococcus, Spiroplasma e Neisseria tiveram os maiores coeficientes
negativos, enquanto os géneros Porphyromonas, Bilophila € Ruminococcus tiveram os

maiores coeficientes positivos.

Os géneros Deinococcus € Porphyromonas tiveram uma diferenga significativa de
abundancia entre casos e controles, rejeitando a hipotese nula do teste de Mann-Whitney, com
um intervalo de confianca de 95% (Tabela 9). Comparando os dois grupos, pode ser
observada uma diferen¢a na abundancia do género Deinococcus (Figura 6) e Porphyromonas

(Figura 7).

Tabela 9: P-valores dos biomarcadores encontrados usando Regressao Logistica nos dados

de obesidade.

Género p-valor

Deinococcus 0,0003
Spiroplasma 0,0902
Neisseria 0,0902
Porphyromonas 0,0101
Bilophila 0,1397

Ruminococcus 0,1119
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Figura 7: Distribui¢ao da abundancia do género Deinococcus nos dados de obesidade.
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Figura 8: Distribuicao da abundéncia do género Porphyromonas nos dados de obesidade.



4.6. Descoberta e investigacio de biomarcadores utilizando Regressao Logistica nos dados

de diabetes

No caso da diabetes, também foram escolhidos os trés mais influentes. Os géneros
Bifidobacterium, Lactobacillus e Clostridium tiveram os maiores coeficientes negativos,
enquanto os géneros Flavonifractor, Peptostreptococcaceae noname € Prevotella os maiores
coeficientes positivos. Vale mencionar que o quarto que mais influenciou negativamente foi o
género Bilophila, que também apareceu nos mais influentes da obesidade, porém

positivamente.

Os géneros Lactobacillus, Clostridium e Peptostreptococcaceae_noname tiveram uma
diferenca significativa de abundancia entre casos e controles, rejeitando a hipotese nula do
teste de Mann-Whitney, com um intervalo de confianca de 95% (Tabela 10). Comparando os
dois grupos, hd uma abundancia maior de Lactobacillus (Figura 8) e Clostridium (Figura 9) e

menor de Peptostreptococcaceae noname (Figura 10) no grupo dos casos.

Tabela 10: P-valores dos biomarcadores encontrados usando Regressao Logistica nos

dados de diabetes.

Género p-valor

Bifidobacterium 0,1871
Lactobacillus 0,0004
Clostridium 0,0075
Flavonifractor 0,5595
Peptostreptococcaceae _noname 1,00E-04

Prevotella 0,06
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Figura 9: Distribui¢do da abundancia de Lactobacillus nos dados de diabetes.
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Figura 10: Distribui¢do da abundancia do género Clostridium nos dados de diabetes
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Figura 11: Distribui¢do da abundancia do género Peptostreptococcaceae noname nos

dados de diabetes.

4.7. Descoberta e investigacio de biomarcadores utilizando Random Forest nos dados de

obesidade

Por meio do método iterativo realizado, foi possivel identificar cinco géneros que
tiveram grande importancia no ajuste do modelo final. Os géneros mais importantes foram

Butyrivibrio, Veillonella, Anaerotruncus, Haemophilus, Subdoligranulum.

Pelo teste de Mann-Whitney, todos os géneros tiveram uma diferenca significativa,
rejeitando a hipdtese nula, com um intervalo de confianca de 95% (Tabela 11). As

distribuicdes estiao exibidas nas figuras abaixo.

Tabela 11: P-valores dos biomarcadores encontrados usando Random Forest nos dados

de obesidade.

Género p-valor

Butyrivibrio 0,0157
Veillonella 0,0114
Anaerotruncus 0,0134
Haemophilus 0,0123

Subdoligranulum 0,0325
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Figura 12: Distribuicao da abundancia do género Butyrivibrio nos dados de obesidade.
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Figura 13: Distribui¢cdo da abundancia do género Veilonella nos dados de obesidade.
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Figura 14: Distribuicdo da abundancia do género Anaerotruncus nos dados de obesidade.
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Figura 15: Distribui¢cdo da abundancia do género Haemophilus nos dados de obesidade.
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Figura 16: Distribuicdo da abundéancia do género Subdoligranulum nos dados de obesidade.

4.8. Descoberta e investigacdo de biomarcadores utilizando Random Forest nos dados de

diabetes

Por meio do método iterativo realizado, foi possivel identificar cinco géneros que
tiveram grande importancia no ajuste do modelo final. Os géneros mais importantes foram

Subdoligranulum, Bilophila, Parabacteroides, Roseburia e Peptostreptococcaceae noname.

Pelo teste de Mann-Whitney, apenas os géneros Parabacteroides, Roseburia e
Peptostreptococcaceae_noname tiveram uma diferenca significativa, rejeitando a hipotese

nula, com um intervalo de confianga de 95% (Tabela 12). O género Parabacteroides esta mais
abundante nos casos de microbiota derivadas de pessoas com diabetes (Figura 16), enquanto

os géneros Roseburia (Figura 17) e Peptostreptococcaceae noname (Figura 18) estdo mais

abundantes nos controles.

Tabela 12: P-valores dos biomarcadores encontrados usando Random Forest nos dados

de diabetes.
Género p-valor
Subdoligranulum 0,2034
Bilophila 0,1023

Parabacteroides 0,0001
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Figura 16: Distribuicdo da abundancia do género Parabacteroides nos dados de diabetes.
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Figura 17: Distribui¢cdo da abundancia do género Roseburia nos dados de diabetes.
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dados de diabetes.



5. DISCUSSAO

Com o aumento na geracao de dados sobre a microbiota intestinal, tanto de pessoas
saudaveis, quanto de pessoas com diferentes fenotipos, o uso de métodos de aprendizado de
maquina pode vir a trazer novas descobertas sobre 0s mecanismos da microbiota intestinal em
uma doenga, possibilitando a predi¢cdo da doenga, ou de fatores associados, ¢ da descoberta de

biomarcadores associados a uma condi¢ado (MARCOS-ZAMBRANO et al., 2021).

Porém, existem ainda muitas limitag¢des, principalmente quando falamos na diferenca
da microbiota intestinal das pessoas. Diversos fatores determinam a composi¢ao e estrutura
da microbiota intestinal, como dieta, regido do mundo, fatores genéticos, idade e sexo
(LOZUPONE et al., 2012). Isso dificulta a construcdo de um modelo bem generalizado, ja
que muitas vezes esses fatores determinantes podem agir como fatores de desordem para o
modelo, tendo mais poder na discriminag¢do das categorias do que as varidveis alvo, que no

caso eram as abundancias relativas dos genéros (WIRBEL et al., 2021).

Outro fator limitante se da nas diferentes técnicas usadas em cada estudo. A maioria
dos estudos usam o gene 16S do RNA ribossomal das células procarioticas para identificagao
dos géneros bacterianos. Porém, na maioria dos casos, apenas alguns fragmentos do gene 16S
rRNA sdo sequenciados (maioritariamente as regides hipervaridveis V3 e V4), o que limita a
identificacao dos géneros (Figura 19). Também, quais regides do gene 16S sdo sequenciados
diferem entre os estudos. Outros estudos, ainda, sequenciam o genoma inteiro da bactéria, por
meio de sequenciamento shotgun dos metagenomas, como € o caso do estudo de Qin et al.
(2012). Essas diferentes técnicas acabam refletindo na resolucdo e qualidade do dado usado,

que pode gerar inconsisténcia nos resultados.

Sample Barcode Primer Sequence
\ j Constant Region
V1 V2 V3 V4 V5 V6 V7 V8 Vg
Targeted Region \ '\ /
16S rRNA Gene Variable Regions

Figura 19: Ilustracdo da regido mais comumente sequenciada do gene 16S. Fonte: CD

Genomics, USA. 2021



Apesar dessas dificuldades, ambos os modelos conseguiram aprender a diferenciar os
casos dos controles, sendo que os modelos de diabetes tiveram um desempenho
significativamente melhor do que os de obesidade. Comparando os resultados dos modelos de
obesidade deste trabalho, com os do estudo de Pasolli et al. (2016), que usou o mesmo
conjunto de dados, temos nimeros bem proximos, apesar da constru¢do do modelo de
Random Forest do estudo citado ter sido um pouco diferente. Sze e Schloss. (2016)
realizaram uma meta-andlise de diversos estudos de microbiota intestinal de individuos
obesos, e perceberam que fatores associados como diferenca na diversidade alpha na
proporcao de Firmicutes € Bacteroidetes ou riqueza da microbiota tinham sim uma diferenga
entre obesos € ndo-obesos, mas ela era muito pequena, e essa diferenga era inconsistente entre
os estudos. Eles também construiram um modelo de Random Forest, € conseguiram
resultados semelhantes ao deste trabalho, mesmo usando maiores conjuntos de dados. Como
citado anteriormente, as diferencas de técnicas e populagdo estudadas limitam a generalizagao
¢ descoberta de um consenso sobre as diferencas entre a microbiota de individuos obesos e

nao obesos.

Ainda comparando com o estudo de Pasolli et al. (2016), considerando os dados de
diabetes, os resultados também foram similares. Os melhores nimeros de desempenho deste
conjunto podem ser associados ao tipo de sequenciamento usado, que foi do tipo shotgun, que
gera maior cobertura do DNA do microrganismo, resultando em uma maior resolucao, além

do tamanho do conjunto de dados que era consideravelmente maior que o da obesidade.

Tanto a Regressao Logistica quanto a Random Forest tiveram resultados proximos nas
tarefas de predi¢do, com os modelos de obesidade tendo um desempenho inferior em ambos.
A Regressao ¢ um modelo infinitamente mais simples que a Random Forest, porém sofre com
multicolinearidade das varidveis. J4 a Random Forest pode levar ao overfit mais facilmente,
devido ao algoritmo ganancioso de constru¢cdo das arvores, que sempre busca pelo melhor
resultado. Ademais, a limitacdo estd muito mais no conjunto de dados do que nos modelos,

em relacdo as tarefas de predicao.

Ambos os modelos conseguiram encontrar biomarcadores para as duas doengas, sendo
que treze biomarcadores encontrados tém uma diferenca significativa de abundancia entre as
duas classes. Nos biomarcadores encontrados pela Random Forest, destaca-se o género

Subdoligranulum, que € benéfico e mais abundante nos saudaveis, e apareceu tanto na lista da



obesidade quanto na da diabetes, apontando uma possivel relagdo entre as doengas. Além
disso, o género Bilophila, que ¢ maléfico e mais abundante nos individuos obesos, apareceu
na lista da obesidade encontrada pela Regressdao Logistica, e na lista da diabetes encontrada

pela Random Forest, apesar de ndo ter diferenca significativa neste caso.

Microrganismos do género Subdoligranulum sao benéficos ao corpo humano, tendo
um efeito probidtico no metabolismo do hospedeiro. Também foi observada uma correlagao
positiva entre a presenga dessas bactérias e a riqueza microbiana no trato intestinal, além de
menor taxa de gordura visceral em individuos com alta abundancia de Subdoligranulum.
Porém, testes in vivo ndo obtiveram resultados positivos, quando observada a diferenca de
peso corporal, gordura, metabolismo de glucose e de lipidios, em ratos que foram
administrados Subdoligranulum variabile por oito semanas. Esses resultados podem ser em
decorréncia da espécie e linhagem usada. Tecnologias de sequenciamento com boa resolugdo
a nivel de espécie e um maior entendimento do papel e atuacdo de microrganismos
especificos na microbiota intestinal sdo avancos necessarios para o desenvolvimento do

conhecimento nessa area (VAN HUL et al., 2020)

Uma espécie do género Bilophila tem sinergia com uma dieta de altas calorias, e
promove a inflamacao, disfuncdo da barreira intestinal e alteragdo no metabolismo de acido
biliar. A administragdo do probiodtico Lactobacillus rhamnosus CNCM 1-3690 limitou a agao
da Bilophila wadsworthia, restituindo a barreira intestinal e reduzindo a inflamagdo,

refor¢ando o impacto negativo dessa espécie na saude humana (NATIVIDAD et al., 2018).

Nao houve consenso significativo nos biomarcadores encontrados entre os dois
modelos, contudo, a investigacao dos géneros que possuiam uma diferenca significativa entre
os dois grupos, pode vir a desvendar novos mecanismos e auxiliar no melhor entendimento

das condicoes estudadas.



6. CONCLUSOES

O uso de algoritmos de aprendizado de maquina em dados de abundancia relativa,
oriundos de estudos de caso controle sobre obesidade e diabetes tipo 2, obteve resultados
semelhantes a outros estudos na tarefa de predi¢do. Apesar das limitagdes do tamanho do
conjunto de dados, diferencas nos métodos entre os estudos, € o0 pouco conhecimento sobre a
microbiota intestinal e seu papel, ha um potencial real do uso desses algoritmos na prevencao,

diagndstico e tratamento dessas doengas.

Dentre todos os biomarcadores encontrados, dois apareceram duas vezes, € contém
estudos sobre o papel dos mesmos na obesidade. Mesmo com a limitacdo no ambito dos

dados, os algoritmos tiveram sucesso em identificar biomarcadores relevantes.

Por fim, a linguagem utilizada se mostrou eficiente e suficiente para a realizagdo deste
trabalho, mesmo sendo uma linguagem extremamente nova, € que ainda vem sendo

atualizada constantemente.
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OBESIDADE

Genus
Deinococcus
Spiroplasma
Neisseria
Ruminococcus
Bilophila

Porphyromonas

DIABETES

Genus
Bifidobacterium
Lactobacillus
Clostridium
Prevotella
Peptostreptococcaceae _noname

Flavonifractor

Values
-0,742009
-0,447768
-0,351575

0,427802
0,570838
0,859379

Values
-0,707830
-0,511474
-0,395307

0,344502
0,636095
0,752718

APENDICE A — Tabela dos coeficientes das variiveis do modelo de Regressio Logistica
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APENDICE B - Tabela dos coeficientes das variaveis do modelo de Random Forest

OBESIDADE

Genus
Butyrivibrio
Veillonella
Anaerotruncus
Haemophilus

Subdoligranulum

DIABETES

Genus
Subdoligranulum
Bilophila
Parabacteroides
Roseburia

Peptostreptococcaceae_noname

Values
0,210883
0,210381
0,205254
0,189634
0,183848

Values
0,221579
0,203845
0,202337
0,190899
0,181340
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